多面體版本 sweep

November 27, 2021

CadQuery 安裝後就有 NumPy,既然如此,如果撰寫程式時,適合用 NumPy 來表現時,就可以善用。

實作 sweep

例如,雖然 CadQuery 的 Workplane 提供了 sweep 方法,然而這個方法是基於 BREP,有時候,我就是會想要控制面,或者就是想要多面體風格,這時有個多面體版本的 sweep 就很適用。

from cadquery import Vector, Edge, Wire, Solid, Shell, Face, Workplane

def polyhedron(points, faces):
    def _edges(vectors, face_indices):
        leng_vertices = len(face_indices)   
        return (
            Edge.makeLine(
                vectors[face_indices[i]], 
                vectors[face_indices[(i + 1) % leng_vertices]]
            ) 
            for i in range(leng_vertices)
        )

    vectors = [Vector(*p) for p in points]

    return Solid.makeSolid(
        Shell.makeShell(
            Face.makeFromWires(
                Wire.assembleEdges(
                    _edges(vectors, face_indices)
                )
            )
            for face_indices in faces
        )
    )

# 多面體版本的 sweep
def sweep(sections):
    # 連接第 s 與 s + 1 個切面的側邊面
    def _revolving_faces(s, leng_per_section):
        faces = []
        for i in range(leng_per_section):
            faces.append((
                leng_per_section * s + i % leng_per_section,
                leng_per_section * s + (i + 1) % leng_per_section,
                leng_per_section * (s + 1) + i % leng_per_section
            ))
            faces.append((
                leng_per_section * s + (i + 1) % leng_per_section,
                leng_per_section * (s + 1) + (i + 1) % leng_per_section,
                leng_per_section * (s + 1) + i % leng_per_section
            ))
        return faces

    leng_sections = len(sections)
    leng_per_section = len(sections[0])

    faces = []

    # 第一個切面
    faces.append(tuple(range(leng_per_section))[::-1])

    # 側邊面
    for s in range(leng_sections - 1):
        faces.extend(_revolving_faces(s, leng_per_section))
        
    # 最後一個切面
    faces.append(tuple(range(leng_per_section * (leng_sections - 1), leng_per_section * leng_sections)))

    sects = [p for section in sections for p in section]
    return polyhedron(sects, faces)

    
r = sweep([
    [(10, 10, 0), (-10, 10, 0), (-10, -10, 0), (10, -10, 0)],
    [(10, 10, 10), (-10, 10, 10), (-10, -10, 10), (10, -10, 10)]
])

show_object(r)

想要建立這個 sweep 很簡單,被指定的多個切面,頂點數必須是相同的(頂點數不同就是要實作 loft),因此面的組合很有規律,註解中已經說明了哪個部份是組合哪些面,這邊先簡單地指定兩個面,純綷測試一下是否能運作,這會顯示以下的結果:

多面體版本的 sweep

結合 NumPy

只不過,那個 _revolving_faces 有點不好閱讀啊?因為切面的頂點數是相同的,你只要計算出第一個切面與第二個切面的側邊面組合,然後每次都將其中索引加上切面頂點數的倍數,就是可以得到後續每一層側邊面…別急著跑迴圈來做這件事…改用 NumPy 如何?

def sweep(sections):
    # 第一個切面與第二個切面的側邊面組合
    def _revolving_faces0(leng_per_section):
        faces = []
        for i in range(leng_per_section):
            rbi = (i + 1) % leng_per_section
            lti = leng_per_section + i
            rti = leng_per_section + rbi
            faces.extend(((i, rbi, lti), (rbi, rti, lti)))
        return faces

    leng_sections = len(sections)
    leng_per_section = len(sections[0])

    faces = []

    # 第一個切面
    faces.append(tuple(range(leng_per_section))[::-1])


    # 側邊面
    faces0 = _revolving_faces0(leng_per_section)
    faces.extend(faces0)
    
    # 運用 NumPy
    np_faces0 = numpy.array(faces0)
    for s in range(1, leng_sections - 1):
        faces.extend(map(tuple, (np_faces0 + (s * leng_per_section))))

    # 最後一個切面
    faces.append(tuple(range(leng_per_section * (leng_sections - 1), leng_per_section * leng_sections)))

    sects = [p for section in sections for p in section]
    return polyhedron(sects, faces)

程式看來簡潔了一下,這還有另一個好處,如果你的切面數很多,或許還有機會透過 NumPy 運行地快一些。

莫比烏斯帶

既然有了個多面體版本的 sweep,來個〈莫比烏斯帶〉吧!

from cadquery import Vector, Edge, Wire, Solid, Shell, Face, Workplane
import numpy

from math import cos, sin, radians

class Matrix3D:
    def __init__(self, m):
        # self.wrapped 是包裹的 numpy.ndarray 實例
        if isinstance(m, numpy.ndarray):
            self.wrapped = m
        else:
            self.wrapped = numpy.array(m)


    # Post-Multiplication (Right-Multiplication)
    def __matmul__(self, that):
        return Matrix3D(self.wrapped @ that.wrapped)


    def transform(self, v):
        vt = (v.x, v.y, v.z, 1) if isinstance(v, Vector) else v + (1,)
        return tuple((self.wrapped @ vt)[:-1])
        

# 平移矩陣
def translation(v):
    return Matrix3D(_translation(v))

# 繞 x 軸旋轉矩陣
def rotationX(angle):
    return Matrix3D(_rotationX(angle))

# 繞 y 軸旋轉矩陣
def rotationY(angle):
    return Matrix3D(_rotationY(angle))

# 繞 z 軸旋轉矩陣
def rotationZ(angle):
    return Matrix3D(_rotationZ(angle))

# 繞指定軸旋轉矩陣
def rotation(direction, angle):
    return Matrix3D(_rotation(direction, angle))


def _translation(v):
    vt = (v.x, v.y, v.z) if isinstance(v, Vector) else v
    return numpy.array([
        [1, 0, 0, vt[0]],
        [0, 1, 0, vt[1]],
        [0, 0, 1, vt[2]],
        [0, 0, 0, 1]
    ]) 


def _rotationX(angle):
    rad = radians(angle)
    c = cos(rad)
    s = sin(rad)
    return numpy.array([
        [1, 0, 0, 0],
        [0, c, -s, 0],
        [0, s, c, 0],
        [0, 0, 0, 1]
    ]) 


def _rotationY(angle):
    rad = radians(angle)
    c = cos(rad)
    s = sin(rad)
    return numpy.array([
        [c, 0, s, 0],
        [0, 1, 0, 0],
        [-s, 0, c, 0],
        [0, 0, 0, 1]
    ]) 


def _rotationZ(angle):
    rad = radians(angle)
    c = cos(rad)
    s = sin(rad)
    return numpy.array([
        [c, -s, 0, 0],
        [s, c, 0, 0],
        [0, 0, 1, 0],
        [0, 0, 0, 1]
    ]) 

def sweep(sections):
    def _revolving_faces0(leng_per_section):
        faces = []
        for i in range(leng_per_section):
            rbi = (i + 1) % leng_per_section
            lti = leng_per_section + i
            rti = leng_per_section + rbi
            faces.extend(((i, rbi, lti), (rbi, rti, lti)))
        return faces

    leng_sections = len(sections)
    leng_per_section = len(sections[0])

    faces = []
    faces.append(tuple(range(leng_per_section))[::-1])

    faces0 = _revolving_faces0(leng_per_section)
    faces.extend(faces0)
    
    np_faces0 = numpy.array(faces0)
    for s in range(1, leng_sections - 1):
        faces.extend(map(tuple, (np_faces0 + (s * leng_per_section))))

    faces.append(tuple(range(leng_per_section * (leng_sections - 1), leng_per_section * leng_sections)))

    sects = [p for section in sections for p in section]
    return polyhedron(sects, faces)
    
def polyhedron(points, faces):
    def _edges(vectors, face_indices):
        leng_vertices = len(face_indices)   
        return (
            Edge.makeLine(
                vectors[face_indices[i]], 
                vectors[face_indices[(i + 1) % leng_vertices]]
            ) 
            for i in range(leng_vertices)
        )

    vectors = [Vector(*p) for p in points]

    return Solid.makeSolid(
        Shell.makeShell(
            Face.makeFromWires(
                Wire.assembleEdges(
                    _edges(vectors, face_indices)
                )
            )
            for face_indices in faces
        )
    )
    
    
def mobius_strip(radius, frags):
    profile = [(10, -1, 0), (10, 1, 0), (-10, 1, 0), (-10, -1, 0)]

    translationX20 = translation((radius, 0, 0))
    rotationX90 = rotationX(90)

    angle_step = 360 / frags
    profiles = []
    for i in range(frags + 1):
        m = rotationZ(i * angle_step) @ translationX20 @ rotationX90 @ rotationZ(i * angle_step / 2)
        profiles.append([m.transform(p) for p in profile])

    return sweep(profiles)
    
r = mobius_strip(20, 24)
show_object(r)

這會顯示以下的結果:

多面體版本的 sweep

分享到 LinkedIn 分享到 Facebook 分享到 Twitter